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In this paper, the oscillatory and steady streaming velocities over a permeable bed 
are studied both theoretically and experimentally. Three different sizes of glass beads 
are used to construct permeable beds in laboratory experiments: the diameters of 
the glass beads are 0.5 mm, 1.5 mm, and 3.0 mm, respectively. Several experiments 
are performed using different wave parameters. A one-component laser-doppler 
velocimeter (LDV) is used to measure the horizontal velocity component inside the 
Stokes boundary layer above the solid and permeable surfaces. It is observed that 
neither oscillatory nor steady velocity components vanish on the permeable surface. 
The 'slip velocities' increase with increasing permeability. Based on the laminar flow 
assumption and the order of magnitude of the parameters used in the experiments, 
a perturbation theory is developed for the oscillatory velocity and the steady wave- 
induced streaming in the boundary layers above and inside the permeable bed. 
The theory confirms many experimental observations. The theory also provides the 
damping rate and the phase changes caused by the permeable bed. 

1. Introduction 
Water-wave-induced boundary layer flows above a smooth and solid surface are 

well-known (e.g. Batchelor 1967). For a progressive wave train with amplitude a, 
wavenumber k', and frequency w propagating in the positive x*-direction over a 
constant depth, h", the leading-order horizontal velocity inside the Stokes bottom 
boundary layer can be expressed as 

in which [ is the stretched boundary layer coordinate and is normalized by the 
boundary layer thickness, 6 = ( v / w ) ' / ~ ,  where v is the kinematic viscosity of the 
water. Stokes (1847) pointed out that individual fluid particles in a sinusoidal, 
irrotational progressive wave do not describe exactly closed paths. Besides, from their 
orbital motions, fluid particles also process a small mean velocity in the direction of 
wave propagation. In a classic paper, Longuet-Higgins (1953) presented analytical 
solutions for the wave-induced streaming inside the bottom boundary layer under 
different wave fields. For a progressive wave train the wave-induced streaming inside 
the Stokes' boundary layer can be written as 

k * a 2 0  [ 3 - 4e-i / \~ cos (5) + e - 4 ~ 1 .  
4 sinh2 k*h* (U&.H. = 
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Although for a small-amplitude wave the mean drift is a second-order quantity in 
terms of the wave slope, k’a, this steady current is responsible for transporting 
sediments and heavy pollutants near the ocean floor. 

The effects of a permeable bed on the flow field above and inside the bed have been 
examined by many researchers using different approaches. Putnam (1949) and Reid 
& Kajiura (1957) investigated the wave-induced flow motions in the permeable bed 
and their contribution to the wave damping. In their study the flow motions inside 
the permeable bed are assumed to obey Darcy’s law and the inviscid, irrotational flow 
model is used for wave motions above the permeable bed. The order of magnitude 
of Darcy’s flow velocity inside the permeable bed is O(co,a(Kw/v)), in which K is the 
permeability in the permeable bed. Since the kinematic viscosity of water is of the 
order of magnitude of lop6 m2 s-* and the typical value for the permeability of sandy 
material is of 
for a typical 10 s swell. Thus, Darcy’s velocity in the permeable bed is usually much 
smaller than the leading-order wave velocity above the permeable bed, which is of 
O(coa). Consequently, the velocity field is discontinuous along the permeable surface 
in both Putnam’s and Reid & Kajiura’s theories. Liu (1973) overcame the problem 
by introducing a Stokes boundary layer above the permeable surface, while Darcy’s 
flow assumption was still used in the permeable bed. In the general derivations of 
governing equations for non-uniform flows in porous media, Dagan (1979) and others 
(e.g. Tam 1969; Lundgren 1972; Howells 1974) have concluded that Darcy’s law, in 
which the effects of the solids in the porous medium on the mean flow is represented 
as the volume forces proportional linearly to the mean velocity, is valid when the scale 
of the mean flow variations is larger than the mean spacing between solids in the 
porous medium. The thickness of the Stokes boundary layer, 6, above the permeable 
surface is of the order of magnitude of 2 mm for a 10 s swell and 0.5 mm for a 
1 s wave in laboratory experiments. Therefore, the mean flow in the porous medium 
must also vary drastically within a small distance from the permeable boundary, in 
which the shear stress becomes important (Liu & Dalrymple 1984). For simplicity, in 
both Liu’s (1973) and Liu & Dalrymple’s (1984) work the dimensionless permeability 
parameter, K o / v ,  has been assumed to be an order one quantity. 

Based on Liu’s (1973) leading-order boundary layer theory, Liu (1977) and Sleath 
(1978) extended Longuet-Higgins’ theory to examine the effects of permeability on 
the wave-induced streaming. By assuming that the flow inside the porous bed is 
governed by Darcy’s law, the wave-induced streaming in the Stokes boundary layer 
can be expressed as (Sleath 1978; Downing 1993) 

m2, the permeability parameter, Ko/v,  is of the order of 

in which the porous bed has been assumed to have an infinite thickness. The 
wave-induced streaming consists of the solution obtained by Longuet-Higgins for the 
solid boundary and the contribution from the permeable bed, which could be quite 
significant if the ratio between the permeability parameter and the dimensionless 
Stokes boundary layer thickness, k*6, becomes large. However, the shortcoming of 
the theory is that since Darcy’s law is employed, the wave-induced streaming is always 
zero in the permeable bed. 

Many laboratory experiments have been performed to measure wave-induced flow 
motions in the water column above a solid bed. In the earlier work dye tracing 
techniques were used to measure the mass transport velocity (e.g. Russell & Osorio 
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1958; Carter, Liu & Mei 1973). Because of the lack of accuracy, the velocity profile 
inside the bottom boundary layer cannot be resolved and only the velocity at the 
outer edge of the boundary layer is usually presented. More recently laser-doppler 
velocimeters (LDV) and hot-film anemometers have been employed to measure the 
velocity inside the boundary layer (e.g. Beech 1978; Sleath 1984; Hwung & Lin 
1990). However, no experiment has been reported for measuring flow motions in the 
boundary layer over a permeable bed. 

In this paper we re-examine the wave-induced flows over a permeable bed both 
theoretically and experimentally. A set of experimental data for the oscillatory 
flow motions and wave-induced streaming in the boundary layer over a permeable 
bed was taken with a one-component LDV. The accuracy of these measurements 
was first verified by comparing the data for the first-order velocity as well as the 
induced streaming over a solid bed with Longuet-Higgins’ theoretical solutions. The 
measurements over porous beds were compared with the theory developed in this 
paper. The new theory is based on a boundary layer approach. Two boundary layers 
are introduced adjacent to the permeable surface, one above and the other beneath 
it. Perturbation solutions are obtained based on three small parameters: the wave 
slope, the viscous boundary layer thickness, and the permeability parameter ( K w l v ) .  
The agreement between the experimental data and the theoretical solutions for the 
oscillatory motions is very good. However, it is less satisfactory for the wave-induced 
streaming. Several possible explanations for the discrepancies are given. From the 
theory the wave damping due to percolation and viscous boundary layer is also 
obtained. 

This paper is organized in the following manner. The set-up and the procedures 
of laboratory experiments are discussed first. The laboratory data for the velocity 
inside the Stokes boundary layer over a smooth solid boundary are presented and 
compared with theories in this section. In $ 3  a perturbation theory is developed for 
the oscillatory and the wave-induced streaming velocities adjacent to the permeable 
surface. Theoretical results are discussed in terms of the permeability parameters, 
K o / v  and y / K .  The comparisons between the experimental data and theoretical 
results are presented in 5 4. The concluding remarks section includes a brief discussion 
on the relationship between Beavers & Joseph’s ( 1967) empirical slip boundary 
condition and our analytical solution. 

2. Experimental set-up and procedures 
Laboratory experiments were performed in a wave tank which is 36 m long and 

0.6 m wide. The tank has two glass sidewalls and the floor of the tank is made of 
sheet steel. In the middle of the tank the floor is removable. For the permeable-bed 
study a 1.82 m long section of the floor was removed and a false bottom was installed 
0.335 m below the true bottom of the tank. Three different permeable beds were 
created in the trench with glass beads of different sizes: 0.5 mm, 1.5 mm and 3.0 mm 
in diameter. 

A piston-type wavemaker at one end of the tank is controlled hydraulically by a 
servo-system. The wavemaker has a built-in function generator, which can provide 
sinusoidal signals from 0.01 Hz to 10 Hz. A one-component LDV was used to 
measure the horizontal velocity component inside the bottom boundary layer. The 
measurement volume of the LDV is an ellipsoid measuring about 30 pm along the 
minor axis and 150 ym along the major axis; these dimensions provide sufficient 
resolution of the boundary layer, whose thickness is typically 600-800 ym. The 
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Exp. a (cm) h' (cm) w (s-') k'h' k'a 
S1 1.25 19.1 3.77 0.55 0.036 
S2 1.77 20.8 4.08 0.63 0.054 
S3 1.76 35.6 3.77 0.78 0.039 
S4 2.00 35.4 4.21 0.90 0.051 
S 5  1.63 35.9 4.71 1.04 0.047 
S6 1.46 24.6 6.28 1.19 0.071 

TABLE 1. Physical conditions and dimensionless parameters for experiments over a solid bottom. 

sampling rate can be varied from 100 Hz to 125 Hz. Typically, 10 to 50 wave cycles 
are recorded at each measurement point. 

Two sets of experiments were performed. The first set measured the velocities inside 
the Stokes boundary layer above a smooth, solid bottom. The primary purpose of 
this set of experiments is to make sure that the LDV system and the data analysis 
procedure are accurate, since analytical solutions are available. The second set of 
experiments measured the velocities inside the boundary layer above a permeable 
bed. For the solid-bottom case, six experiments were performed with k*h' ranging 
from 0.55 to 1.19. For the permeable-bed case, nine experiments with k*h* = 0.78 to 
1.14 were carried out. The corresponding wavelength ranges from 1.1 m to 1.6 m. 
Therefore, the length of the porous bed is always longer than one wavelength. 

As a summary of these experiments, table 1 shows the physical characteristics of all 
experiments made over the solid bottom. Table 2 lists physical characteristics of the 
experiments over porous beds. The Reynolds numbers, defined as Re = ui /vco  where 
u, = aco/sinhk"h* is the velocity at the outer edge of the boundary layer, are less 
than 1720 for the solid-bottom cases and 431 for the porous-bed cases. Therefore, the 
effects of turbulence are insignificant in all experiments. This has also been confirmed 
by our observations using dye particles. In table 2 K represents the permeability of the 
porous materials used in the experiments and was measured by using a constant-head 
permeameter (see Davis 1995). The permeameter basically consists of two constant- 
head tanks connected by a tube which is filled with the porous materials to be tested. 
By maintaining a constant-head difference in the head tanks, Ah, a constant flow rate, 
Q,  is measured. Denoting A and L as the cross-sectional area and the length of the 
test tube, respectively, the permeability K is determined from Darcy's law: 

The parameter y appearing in table 2 is related to the diameter of the glass beads, D, 
as follows (Dagan 1979): 

D2 y = -. 
80 (3) 

The significance of this parameter will be explained in the next section. 
The LDV data were put through a coarse filter which detects the occurrences 

of signal 'drop-outs' (where the velocity drops to nearly zero) and 'levels' (where 
the velocity 'hangs' at one level for between one to five subsequent measurements), 
and either replaces the measurement with an interpolated value or eliminates the 
measurement altogether (cf. Skjelbreia 1987, for a filter designed for major data 
gaps due to air entrainment in breaking waves). Signal drop-outs and levels occur 
when the measurement volume is very close to the bottom and the light scattered 
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: 2  
Exp. D h' w a K 

(mm) (cm) (s-l) (cm) (10-9m2) (10- m ) 
A2 0.5 19.9 5.01 0.517 0.235 3.13 
A3 1.5 19.9 5.01 0.512 1.800 28.13 
A4 3.0 19.9 5.01 0.515 7.450 112.50 
B2 0.5 24.0 5.64 0.537 0.235 3.13 
B3 1.5 24.0 5.64 0.513 1.800 28.13 
B4 3.0 24.0 5.63 0.522 7.450 112.50 
C2 0.5 24.7 6.07 1.181 0.235 3.13 
C3 1.5 24.7 6.08 1.167 1.800 28.13 
C4 3.0 24.7 6.07 1.140 7.450 112.50 

TABLE 2. Physical conditions for experiments over a permeable bottom. 

by the bottom mixes with the desired signal from the particle moving through the 
measurement volume. To find the oscillatory and mean velocity components from 
the LDV measurements, the velocity data were fitted to a multi-harmonic sinusoidal 
time series model with arbitrary phases, amplitudes, and the steady component. The 
frequency was determined beforehand from a time analysis of the velocity record. For 
all experiments the second harmonics were almost always less than 5% of the first 
harmonic and the third harmonic was typically less than 1%. The steady velocity 
component was obtained by the phase-averaging method. 

The experimental results over a solid bottom are summarized in figures 1 and 2. 
The measured magnitudes of the first-harmonic velocity inside the boundary layer are 
plotted in figure 1. The velocity has been normalized by the free-stream velocity at 
the outer edge of the boundary layer. The solid line in the same figure represents the 
theoretical boundary layer solution, ( l a ) ,  and is normalized by urn = aco/ sinh k'h'. 
The agreement between the theory and experimental data is excellent. The wave- 
induced streaming velocity inside the boundary layer is plotted in figure 2; the 
velocity has been normalized by k"a2co/ sinh2 k*h*.  The theoretical curve is based on 
Longuet-Higgins' solution, i.e. (lb). The agreement between the laboratory data and 
the theoretical result is reasonable near the bottom, 5 < 1.0. Large discrepancies near 
the outer edge of the boundary layer could be caused by the lack of consideration 
of weak reflection from the beach, which is less than lo%, and by the existence 
of a secondary current in the wave tank (Downing 1993). Sleath (1972) has also 
pointed out that the higher-order (nonlinearity) effects might increase or decrease 
mass transport significantly, depending on kh values. 

The laboratory data for the permeable bed cases will be presented in $4 in con- 
junction with the new theory to be developed in the following section. 

3. Theory 
Consider a small-amplitude progressive wave train propagating over a permeable 

bed. The water depth is h' and the thickness of the permeable bed is d'. The 
governing equations for flow motions above the permeable bed are the well-known 
Navier-Stokes equations: 
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FIGURE 1. Comparison between the theory and experimental data for the magnitude of oscillatory 
velocity inside the Stokes boundary layer. The theoretical curve is the dimensionless version of (la); 
the normalization factor is ma/ sinhk'h'. For the experimental data: M, kh = 0.55; 0, kh = 0.63; 
X, kh = 0.78; A, kh = 0.90; 0, kh = 1.04; 0, kh = 1.19. 

v.u+* = 0, ( 5 )  
in which u+* denotes the velocity vector on the vertical plane, p+* the pressure, p the 
density of fluid, and v the kinematic viscosity of fluid. On the other hand, the flow in 
the permeable bed can be described by the following equations (e.g. Brinkman 1947; 
Batchelor 1974; Dagan 1979): 

V-u-' = 0, (7) 
where u-*, n, K represent the seepage velocity, the porosity, and the permeability, 
respectively, in the permeable bed. Equation (6)  is the momentum equation for the 
mean fluid flow in a porous medium. The left-hand-side terms denote the acceleration 
per unit mass (or the inertia force per unit mass), while the right-hand-side terms 
represent the total forces per unit mass. The first term is the force caused by the 
pressure gradient. The second term denotes the effect of fixed solid particles, which 
is equivalent to a volume force on the fluid that is proportional to the 'local' mean 
fluid velocity, exactly as in Darcy's law for a porous medium (Batchelor 1974). The 
last term on the right-hand side represents the viscous forces and y is a parameter 
depending only on the solid matrix of the permeable bed. For a very slow flow or a 
low Reynolds number flow, the inertia forces can be neglected. Furthermore, if the 
viscous term is also ignored, the momentum equation (6 )  reduces to the well-known 
Darcy's flow equation. It should be reiterated here that Darcy's law is valid if the scale 
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FIGURE 2. Comparison between the theory and experimental data for wave-induced steady velocity 
inside the Stokes' boundary layer. The theoretical curve is the dimensionless version of ( l b ) ;  the 
normalization factor is wk*a2/sinh2k'h*. For the experimental data: H, kh = 0.55; 0,  k h  = 0.63; 
X, kh = 0.78; A, kh = 0.90; 0, kh = 1.04; 0, kk = 1.19. 

on which the mean velocity varies is larger than the mean spacing between the fixed 
solids in the porous medium (Batchelor 1974). Therefore, Darcy's equation becomes 
inadequate to describe the mean flow motion in the region in which the velocity 
varies drastically, such as the boundary layer region (Dagan 1979). More specifically, 
Darcy's law is unable to transfer viscous shear force from the free flow above the 
porous bed into the interior of the flow in the permeable bed and leads to the 
incorrect conclusion that the mean velocity is always zero in the porous bed. Hence, 
both inertia and viscous terms are considered in this paper. Rigorous derivations of 
(6) for a Stokes flow (i.e. ignoring the inertia term) have been given by Tam (1969), 
Lundgren (1972), Howells (1974), and Dagan (1979). Since spherical glass beads were 
used in the experiments, the y value can be calculated by the cell model of Happel & 
Brenner (1965) and is related to the diameter of the glass bead, D,  in the form shown 
in (3) (Dagan 1979). 

For the progressive wave with a characteristic amplitude u and frequency, w, the 
following dimensionless variables will be used in the analysis : 

in which ( x ,  z )  denotes the dimensionless Cartesian coordinates, k the dimensionless 
wavenumber and q the dimensionless free-surface displacement. The corresponding 
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Exp. CI x /I x lop3 E 0 x lo-' ko 
A2 1.32 1.18 1.14 1.25 1.532 
B2 1.74 1.32 1.37 1.33 1.303 
c 2  4.44 1.43 1.52 1.38 1.228 
A3 1.31 9.02 1.14 3.75 1.532 
B3 1.66 1.02 1.37 3.98 1.303 
C3 4.02 1.09 1.53 4.14 1.227 
A4 1.32 3.73 1.14 7.51 1.532 
B4 1.69 4.19 1.36 7.96 1.305 
C4 4.28 4.52 1.52 8.26 1.228 

TABLE 3. Dimensionless parameters for experiments over a permeable bottom. 

dimensionless governing equations become 

~ + uu+.vu+ = -vp+ + E 2 v 2 +  u , au+ 
at (9) 

for flow motions above the porous bed, and 

v - u -  = 0, (12) 
for flow motions inside the permeable bed. In the above equations three parameters 
have been introduced : 

in which u denotes the wave slope, E measures the thickness of the viscous boundary 
layer relative to a characteristic wavelength, and p indicates the magnitude of seepage 
flows in the porous bed. Based on the experimental data presented in the previous 
section, these parameters are small (see table 3). On the other hand, it is important 
to note that the parameter 

is an order-one quantity in most of the experiments (see table 3). Therefore, from (1 l), 
it is expected that a boundary layer of thickness of O ( d )  exists in the porous bed. 

3.1. A perturbation analysis 
The dynamics of the flow problem can be presented in the following manner. In 
the flow region above the permeable bed, motions are essentially irrotational ex- 
cept in the boundary layers adjacent to the free surface, z = q, and the permeable 
boundary, z = -h. Because the permeability of the porous bed is small, i.e. pal, 
for the leading-order flow problem the wave does not sense the porous bed so 
that the solution for irrotational motions is the same as the well-known potential 
flow solution for small-amplitude waves over a solid bottom. However, the hy- 
drodynamic pressure on the permeable surface, z = -h, induces Darcy-type flow 
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motions inside the porous bed, which are of the order of magnitude of f i .  At the 
same time, a leading-order horizontal rotational velocity component is generated 
inside the boundary layers above and underneath the permeable surface in order to 
satisfy the continuity of the horizontal velocity component and its vertical deriva- 
tive across the permeable surface at the leading order. Since the Darcy-type flow 
motions give a finite velocity, in both horizontal and vertical directions, on the 
permeable surface, both irrotational and rotational flow motions above the perme- 
able bed must be corrected at order p. By integrating the leading-order continuity 
equation inside the boundary layers, one finds that a vertical velocity component 
of order c is generated. Therefore, the irrotational and rotational velocity inside 
the boundary layers must also be corrected at order c. Finally, at order a, wave- 
induced streaming inside the boundary layers generated by the nonlinear interactions 
among the lower-order velocity components (i.e. Reynolds stresses induced by wave 
motions). 

Accordingly, we now introduce the following perturbation expansions. Since there 
are two additional horizontal length scales due to viscous damping and percolation, 
O(l/ke) and O(l/kfi), respectively, in additional to the wavelength, O( l /k) ,  we shall 
expand the dimensionless k in powers o f f  and p. Thus, 

u+ = V [ ( ~ O  + p411 + e410)el(~'-[)] + [ulr + flu:; + eurJel(kx-') + au& + ..., (15a) 

(1 5b) 

(15c) 

(154 

(15e) 
in which the velocity in the flow region above the porous bed, up to O(f), has 
been decomposed into irrotational and rotational components. While the rotational 
components, with a superscript r in (15a,b), exist only in the boundary layers, the 
velocity potential satisfies the Laplace equation, 

- 
u = [uur + ~ ( u l ; ~  +ull) + ~ u ~ e ~ ( ~ ~ - ~ )  + au, + ' . . ,  

p' = [ p $  + ~ p :  + ~ p l ~ l e  

vl = ( V O  + Pr11 + fvlde 

+ l (kx-r )  + xp& + . . ., 
+ MYOI + .. . ,  i ( k k - t )  

k == ko + pkl l  + Eklo + .. . ,  

1 = 0, (16) ~ 2 ( + ~ l ( k x - - t )  

in which 4 could be 40, 411, or 410, in the entire flow domain above the porous 
bed so that the continuity equation is satisfied. The boundary layer adjacent to the 
permeable surface has a thickness of O(e). By adopting the stretched coordinate 

z + h  i = 7, 
the continuity equation for the rotational velocity in the boundary layer becomes 

= 0, a,+ 1 awl+ 
ax f a i  __ + -__ 

in which (u'+, wr+) are the rotational velocity components. In the boundary layer the 
momentum equation, (9), can be expressed in the following component form: 
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We remark here that a boundary layer with the same thickness, O(e) ,  also exists 
adjacent to the free surface. However, the leading rotational velocity in the free- 
surface boundary layer is of O ( E )  (e.g. Batchelor 1967) and will not affect the analysis 
for flow motions in the bottom boundary layer, up to O(a). Therefore, we will not 
discuss the free-surface boundary layer in this paper. 

Underneath the permeable surface a boundary layer with the stretched coordinate 
z + h  5 = -___ 

€0 ’ 
exists, within which the momentum equations are written as 

The boundary layer thickness is O(r0) ,  with 0 being O( 1). Outside the boundary layer, 
the flow motion is governed by Darcy’s law, i.e. 

u - = - p z ,  ap-  w - = - p - .  ap- 
az 

From the continuity equation, the pressure field satisfies the Laplace equation, 

v2p- = 0. (22b) 
The boundary conditions can be summarized as follows. On the free surface the 

kinematic and dynamic boundary conditions can be approximately written as 

a Y  84 
at az - - o n z  = 0, 

a4 
at 
- + q  = 0 onz  = 0. 

Along the permeable surface, z = -h, the velocity and the vertical derivative of 
the horizontal velocity component are required to be continuous. Finally the velocity 
vanishes along the bottom of the porous bed, z = -(h + d ) .  We remark here that a 
boundary layer of thickness O(e0)  appears next to the solid surface, z = -(h + d). 
However, the leading-order velocity in this boundary layer is of O(p), and will not 
affect the results in the boundary layers near the permeable surface. Therefore, 
the results for the solid-surface boundary layer will not be presented in the present 
analysis. 

When (15) are substituted into (16)-(23) and orders are separated, a sequence of 
problems is obtained. 

(i) Inviscid solution at O(1): 

= 0, z = -h, * 
dz 
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4 0  = 0, z = 0, d40 
d2 
_ _ -  

yo = i$o, z = 0. (244  
The leading-order problem describes a progressive wave train over a solid bottom. 

The solution is well-known and can be written as 
.cash ko(z + h )  

$0 = -1 
cash koh ' 

qo = 1, 
with the dispersion relationship 

The corresponding dynamic pressure is 

which has a finite value along the bottom, z = -h, 
1 

cash koh' 
+ Po lz=-h = ___ 

and it, in turn, generates Darcy-type flow motions in the porous bed at O(p). 

while the horizontal velocity component remains a constant, i.e. 
From (25a), one finds that the vertical velocity component vanishes at the bottom, 

which suggests that O( 1) boundary layer solutions are required to satisfy the conti- 
nuity of the velocity along the permeable surface. 

(ii) Boundary layer corrections of O(1): 

component satisfies the following equations : 
In the boundary layer above the permeable surface, 1: > 0, the rotational velocity 

Ug+r+O,  (-+a. (29b) 
Similarly, in the boundary layer underneath the permeable surface, 4 > 0, the 
horizontal velocity component is the solution of the following equations : 

U , ' - + O ,  5 -+a. (30b) 
The continuity of the O( 1) horizontal velocity component and its vertical derivative 
requires the following conditions : 

(31a) +r -r iko4o/a=-h + uo Ir=o = uo lea, 
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u+r = ge--(1-X/$ 

u;' = Ce-l, 

0 2 

with 

( 3 2 4  
1 - i  c = -- Jz *B. 

The solution, (32), implies that while the phase of the horizontal velocity changes 
continuously throughout the boundary layer above the permeable surface, it remains 
a constant in the boundary layer in the porous bed. 

The continuity equations give 

1 dw;, 
0 d5 

ikou;' - -__ = 0, 

from which the O ( E )  vertical velocity components inside the boundary layers may be 
integrated from outside the boundary (i.e. [ -+ co and 5 -+ co) inward to [ and 5 ,  
respectively. Thus, 

wGr = -ikoOCe-5. (34b) 
Because w;" and wGr are not the same on the permeable surface ([ = 0 and 5 = O), 
the difference must be balanced by the irrotational velocity component d&o/dz at 
O(E)- 

(iii) Darcy's solution of O ( p ) :  

gradient. Thus 
In this order of magnitude, the velocity components are determined by the pressure 

(350) - D  ull  = -ikop;, 

From the continuity equation the pressure field satisfies the following equation : 

d2P, 
__ - kip; = 0, -(h+d) < z < -h. 
dz2 

The boundary conditions are 

__ = 0. z = -(h + d ) .  dP, 
dz 
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The solution for the pressure field can be readily obtained when (27b) is used in 
(36b). Thus, 

(37) 
- cash ko(z + h + d )  

= coshkod coshkoh. 
The velocity field can be calculated from (35a) and (35h), which has finite values 
along the permeable surface, i.e. 

These velocity components must be matched by the flow field above the permeable 
surface at O(p), which leads to the next problem. 

(iv) Inviscid correction of O ( p ) :  

q l l  = z = 0. 
The solution may be expressed as 

( 3 9 4  

where 

2ko tanh kod 
2koh + sinh 2koh’ 

k l l  = i 

ikllh tanhkoh 
E =  - F tanh koh, 

cash koh 
and the free-surface displacement, q l l ,  has been assumed to be zero. The expression 
for k l l  is a pure imaginary constant. Therefore, it represents the damping rate caused 
by the percolation in the permeable bed; the percolation does not affect the phase 
up to this order of magnitude. As the thickness of the porous bed becomes large, 
kod -+ co, the damping rate k l l  gives the same expression as the one derived by Reid 
& Kajiura (1957). 

It is clear that the horizontal velocity component of the inviscid solution is non-zero 
on the permeable surface. Hence, corrections must be made in the boundary layers 
at 

(v) Boundary-layer corrections of O(p) :  
In the boundary layer above the permeable surface, [ > 0, the rotational velocity 
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Similarly, in the boundary layer underneath the 

S. Downing 

(41b) 
permeable surface, E > 0, the . -  

horizontal velocity component is the solution of the following equations : 

UT;'-+O, <-boo.  (42b) 
The continuity of the O(p)  horizontal velocity component and its vertical derivative 
across the permeable surface requires the following conditions : 

(42c) (ikl140 + ik04ll)L-h + u;;l(i=o = (uGr + uGD)lt=o, 

- -  

The boundary layer solutions can be readily obtained as 

with 

H =  ( 1 + -  1 +i)- '  [iko ( -ikll 1 

$0 cosh koh ko cosh koh 
+ 

(434 

(vi) Inviscid solution of O(E)  
Because of the difference in w; and w ~ '  along the permeable surface, (see (34)), the 

irrotational velocity field must be corrected at O ( E )  so that the continuity is satisfied 
along the permeable surface: 

q10 = $lo, z = 0. 
The solution may be obtained as 
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where 

(45b) 
1 - i  

N = -B--i%C, Jz 
$ka cosh koh 

iklo tanhkoh 

(1 + i - $61, 
klo = 2koh + sinh 2koh 

M =  - N tanh koh, 
cash koh 

in which we have assumed that q10 = 0. The real part of the expression for klo 

represents the phase modification, while the imaginary part represents the damping 
rate. Both are caused by the viscous boundary layers above and below the permeable 
surface. For the special case with y = 0, klo can be simplified to 

Jzko” 
klo = (1 + i )  2koh + sinh 2koh’ 

which is the well-known solution for the effects of a Stokes’ boundary layer over a 
solid bottom on the wavenumber and wave damping. 

Once again, the horizontal velocity component of the inviscid solution is non-zero 
on the permeable surface. Hence, corrections must be made in the boundary layers 
at O(E).  

(vii) Boundary-layer corrections of O(e)  : 

component satisfies the following equations: 
In the boundary layer above the permeable surface, ( > 0, the rotational velocity 

u;; -+ 0, [ + 02. (47b) 
Similarly, in the boundary layer underneath the permeable surface, 5 > 0, the 
horizontal velocity component is the solution of the following equations : 

uy, r - to ,  t - t G o .  (48b) 
The continuity of the O(e)  horizontal velocity component and its vertical derivative 
requires the following conditions : 

( i k d o  + iko$lO)lz=-h + u:;l;=o = ul0 15=0, (49a) --I 

du;; dufd’ 
= 

The boundary layer solutions can be readily obtained as 
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kl0 

cash koh' 
Q = R-ikoM - 

3.2. Wave-induced streaming 
The wave-induced streaming inside the boundary layers is of O(a) and is governed by 
the following equations: 

in which the overbar represents the time average over a wave period. We remark here 
that the inviscid vertical velocity, d&/dz, is proportional to el in the boundary layer 
(see (24b)). Furthermore, to include the effects of percolation we have assumed that 
p / e  is O(1). Substituting (25~) '  (32a), (34a), (40~) '  and (45a) in (51~) '  we obtain 

Integrating (52) and (51b) twice and applying the boundary conditions 

uo1 - uo1, r = 0, 5 = 0, (53a) -+ - -- 

we find the steady streaming in the boundary layers as follows: 

__ uol = c&, 
where 

2 1 { ( ;I + e2%) + coshkoh koB* [ - k o x  - tanhkod] }, (54c) C3=-0Re koB2 -- J z e  
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uosinh(koh) 

FIGURE 3. The effects of permeability parameter, 8, on the magnitude of the leading-order 
horizontal oscillatory velocity inside the boundary layer above the permeable surface. 

I >  koB* P o +  ;Ttanhkod p l - i  . (544 CZ = C3 - ;Re koB2(i + i - 0 2 ) +  ____ 
cash koh 

The induced streaming at the outer edge of the boundary layer above the permeable 
bed is CZ. For the special case when the sea floor is a solid, impervious surface, i.e. 
K = y = 0, the parameters p and 0 also become zero. Hence, C3 = 0 and 

which is the same as the Longuet-Higgins’ solution. (The dimensional form of the 
above equation is the same as that given in ( lb )  as [ -P m.) On the other hand, when 
only y is assumed to be zero, the induced streaming at the outer edge of the boundary 
layer becomes 

-+ - 3 ki  p 1 tanhkod 

in which the second term represents the effects of percolation. If the thickness of the 
porous bed is large in comparison with the wavelength, the above expression becomes 
the same as (2) for [ -+ co. 

3.3.  Discussion on analytical solutions 
In figure 3 the leading-order horizontal velocity inside the boundary layer is plotted 
for different values of 0. This velocity is the sum of the irrotational and rotational 
components. For B = 0, the case coincides with the impermeable bed case up to this 
order of magnitude. Therefore, the horizontal velocity vanishes at [ = 0. On the 
other hand, when 0 is not zero, there is a slip velocity along the permeable surface, 

( 5 6 )  + -~ 
C2 = 4 cosh2 koh 6 2a sinh2 koh’ ~011:-*m - 
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0 

FIGURE 4. The damping rate due to percolation as a function of koh and kod. 

which increases with increasing 6. The theoretical expression for the leading-order 
slip velocity on the permeable surface can be found from (31c) and (32), i.e. 

For the laboratory case the 6 is of order one. The corrections to the horizontal velocity 
due to percolation, bull, and the higher-order viscous effect, a l O ,  are insignificant, 
since both parameters p and E. are quite small. The leading-order horizontal velocity 
inside the permeable bed decays exponentially from the slip velocity on the permeable 
surface into the porous bed, (32b). The magnitude of this velocity also decreases as 6 
decreases. 

Owing to percolation, wave energy is dissipated. As shown by ( ~ O C ) ,  the damping 
rate is given by Im(kll). In figure 4, the ratio of damping rate to wavenumber ko 
is plotted as a function of water depth, koh, and the depth of the thickness of the 
permeable bed, kod. It is evident that the damping rate increases as the permeable 
bed becomes thicker and water depth shallower. We reiterate that the real part of 
kll is always zero and therefore the percolation does not affect the phase of the wave 
propagation at this order of magnitude. On the other hand, the O ( E )  correction to the 
wavenumber, klo, contains the real and imaginary parts as given in (45c). They are 
shown in figure 5. The imaginary part represents the damping rate and is independent 
of 6. The real part of klo could be either positive or negative depending on the value 
of 6; klo vanishes when 6 = 1/$. 

The wave-induced streaming inside the boundary layer above the permeable bed is 
plotted in figure 6 for koh = 1.0 and d = 2h with various values of 19 and file. When 
I9 is not zero, there is also a slip velocity along the permeable surface for the wave- 
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kOh 

FIGURE 5. The effects of the viscous boundary layers on the wavenumber as a function of the water 
depth, koh, and the permeability parameter, 0. (a)  The effects on the phase function and ( h )  the 
viscous damping rate. 

induced streaming. The magnitude of the wave-induced streaming increases as the 
parameter p / e  increases. Similarly to the leading-order oscillatory velocity component 
the wave-induced streaming inside the porous bed also decays exponentially. 

4. Comparisons between experiments and theories 
In this section the experimental data for the permeable-bed cases (see tables 2 

and 3) are presented and compared with theoretical results. The details of the data 
acquisition procedure can be found in Davis (1995). 

In figure 7 the leading-order theoretical solutions and experimental data for the 
horizontal oscillatory velocity inside the boundary layer above the permeable bed for 
all cases are plotted. Laboratory data were taken along several vertical cross-sections 
across the wave tank; only the averaged values are plotted. The slip velocities 
along the permeable surface are clearly shown in the experimental data and they are 
consistently larger than the theoretical prediction. The overall agreement between 
the theoretical solutions and the laboratory data in terms of the magnitude and the 
profile of the oscillatory velocity inside the boundary layer is very good. 
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FIGURE 6. The wave-induced streaming inside the boundary layer above the permeable bed for 
koh = 1.0, d = 2h and different values of fl and /?/.: (a) /?/. = 0, (b)  1, (c )  5, (d)  10. 

Using the physical parameters listed in tables 1 and 2, the dimensional damping 
coefficients, ( 4 6 )  and ( ~ O C ) ,  are calculated for the experiments and presented in table 4. 
The expressions for these damping coefficients are given specifically as 

$ki2 k;o = 6 (g) 
o2 2kih' + sinh 2k;h" 

2ki tanh k id  
k'l = 2kih' + sinh 2kih" ' 

It is expected that the damping coefficient caused by the energy dissipation inside the 
Stokes boundary layer above the permeable surface remains more or less constant 
for all experiments. But the damping coefficient due to percolation grows quickly as 
the permeability increases. For the porous bed with 3 mm glass beads the energy 
dissipation due to percolation dominates. The free-surface elevations were measured 
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Periodic velocity Periodic velocity Periodic velocity 

FIGURE 7. Comparison between experimental data ( x )  and theoretical results for the leading-order 
oscillatory velocity in the boundary layer above the permeable bed. Labels refer to the experimental 
parameters listed in table 3. 

Exp. k;,, k ; ,  4 0  + 6, 
( lop3 m-') (lo-) m-l) ( lop3 m-') 

A2 3.58 2.67 6.25 
A3 3.58 15.82 19.41 
A4 3.58 65.45 69.03 
B2 2.61 1.72 4.33 
B3 2.60 13.17 15.77 
B4 2.60 54.47 57.08 
C2 2.44 I .68 4.12 
C3 2.43 12.88 15.31 
C4 2.44 53.36 55.80 

TABLE 4. Dimensional damping coefficients for experiments over a permeable bottom. 

along the porous bed (0 < x < 1.82 m) with 5 cm increments. Taking the damping 
and the reflection into consideration, the wave profile over the porous bed can be 
expressed as follows : 

q(x, t )  = a1 cos(kx - wt)e-"' + Ral cos(kx + w t  + 3LO)eC"'21-X), 

in which K is the total damping coefficient, R the reflection coefficient caused by the 
porous bed, 1 = 1.82 m the length of the porous bed and /lo a phase constant. The 
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experimental data for the wave envelope over the porous bed is plotted in figure 8 
for experiment C3. The reflection coefficient is estimated as R = 5.7%. Using the 
theoretical solution for the damping coefficient, i.e. IC = k; ,  the theoretical wave 
envelope is also plotted in the same figure. The agreement between the experimental 
data and theory is good. Similar results are also obtained for different experiments 
(Davis 1995). 

In figure 9 the wave-induced streaming is plotted. The differences between the 
experimental data and theoretical solutions are quite large, especially for the cases 
of large glass beads (i.e. larger permeability). Similar to the solid-bottom case (see 
figure 2), the laboratory data near the outer edge of the boundary layer are always 
much smaller than the theoretical predictions. We speculate that a weak circulation 
pattern exists in the wave tank, generated by other physical mechanism, which has 
the same order of magnitude of the wave-induced streaming. The higher-order effects 
might also play a role (Sleath 1972). Nevertheless, the experimental data demonstrate 
that the steady streaming does increase as the permeability of the permeable bed 
increases. 

5. Concluding remarks 
A perturbation theory has been developed for flow motions in the boundary layers 

adjacent to a permeable bed. The theory is based on the assumptions of small wave 
amplitude, weak permeability, and small viscosity. Both the oscillatory velocity com- 
ponent and the wave-induced streaming are calculated from the perturbation theory. 
Theoretical results are compared with the laboratory data; reasonable agreement is 
observed for the oscillatory velocity component. The theory tends to over-predict the 
wave-induced streaming as compared with the experimental data. Both theoretical 
and experimental data indicate that the permeable bed causes the slip velocity in both 
oscillatory and steady velocity components. Moreover, the wave-induced streaming 
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FIGURE 9. Comparison between experimental data and theoretical results for the wave-induced 
streaming in the boundary layer above the permeable bed. 

increases with increasing permeability. The theory also provides the damping rate 
due to dissipation in viscous boundary layers and in the permeable bed. 

In studying Poiseuille flows over a permeable wall, Beavers & Joseph (1967) 
proposed a slip boundary condition along the permeable surface. Using our notation, 
the slip boundary condition can be expressed as 

along zx = -h*, where r is a dimensionless parameter. Using the theory developed 
herein, we find that 

which depends only on the structure of the permeable bed and is consistent with 
Beavers & Joseph's original hypothesis. We reiterate here that the slip condition, 
(58) and (59), is extended from the steady Poiseuille flows to the present oscillatory 
boundary layer flows. It cannot be applied to the wave-induced streaming directly. 

Since the wave-induced streaming is a second-order quantity and can be confused 
with the existing second-order currents in the wave tank, the U-shaped oscillatory 
flume facility may be considered as an alternative for future laboratory experiments. 
Moreover, different permeable materials perhaps should be used for determining the 
parameter 7 .  
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